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ABSTRACT

The effects of round-trip atmospheric turbulence on ladar are being investigated
using a Monte Carlo code with many phase-screens to simulate atmospheric turbulence
effects.  These phase-screens are located along the outward path of the laser-mode and the
inward path of the backscattered laser speckle pattern.  The targets used are variable in
size and smaller than the propagated laser-mode transverse dimension and are therefore
termed "unresolved."  In this paper previous round-trip turbulence analyses and data are
reviewed, and the current Monte Carlo simulation code is discussed.  Simulation results to
date are presented indicating that intensity fluctuations or "scintillation" is best described
by a new two-parameter K-distribution probability density function.  This intensity
distribution may then be used in deriving a ladar receiver-operating-characteristic for
determining the target detection probability including round-trip turbulence.

1.0  INTRODUCTION

Ladars operating within the atmosphere must transmit a laser mode through the atmosphere to the
target.  This mode is corrupted by turbulence which results in the familiar "atmospheric speckle" patterns
on the target.  Almost all atmospheric turbulence research to date has pertained to this one-way
propagation problem.  However, small diffuse or specular targets backscatter only a small fraction of the
speckle pattern at long ranges when the target is angularly unresolved.  This backscattered light then
propagates back through the atmospheric turbulence, undergoing further corruption and is collected by the
receiving aperture.  Round-trip passage through turbulence causes a scintillation peak and then eventually
saturating at a lower level as a funcion of target range.  Aperture averaging of this round-trip speckle also
occurs.

Measurements and analyses of round-trip turbulence intensity fluctuations for fully resolved
targets were made in the 1980's by Gudimetla and Holmes1-4 of the Oregon Graduate Institute.  A "poly-
chromatic K distribution" and a "mono-chromatic K distribution" were found to agree with data and theory
for direct and heterodyne detection ladar irradiance fluctuations, respectively.  These distributions were not
incorporated into a ladar receiver-operating-characteristic analysis, however.  Other measurements to very
small glint (unresolved) targets were made at this time5,6 which indicated enhanced intensity fluctuations-- a
factor of 3 or 4 times larger normalized intensity variance.
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The round-trip turbulence to small targets problem is now being studied using Monte Carlo
techniques.  Multiple large dimension phase-screens are used in propagating the laser mode to the target to
simulate atmospheric turbulence.  The phase-screens incorporate Cn

2, inner-scale dimension, outer-scale
dimension, and laser wavelength in a modified Kolmogorov spectrum to accurately simulate path integrated
turbulence effects.  At the target, a subset of points diffusely or specularly reflects the laser speckle pattern.
 The backscattered E-field is then back-propagated through the same or new phase-screens and collected by
a subset of points corresponding to the collection aperture.  The irradiance fluctuations across this
selectable aperture result in irradiance probability density functions, following many Monte Carlo runs. 
The simulated PDF's are compared to lognormal, negative-exponential, K-distribution, and other PDF
models as a function of aperture size, path integrated turbulence strength, and target size.  The correct
irradiance PDF can then be incorporated into a ladar receiver-operating-characteristic.  The smoothing
effects of transverse wind is also demonstrated.

2.0  REVIEW OF THE ANALYTICAL TREATMENT OF ROUND-TRIP TURBULENCE

The analytical treatment of laser light propagation through round-trip turbulence is complicated. 
We review this treatment for purposes of summarizing the previous work for convenient reference and for
comparing it to the results of the Monte Carlo code outputs.

2.1  Treatment of the E-field Propagation Through Turbulence (Round-Trip)

The laser radar transmitted E-field propagates out to the target where it is diffusely reflected (for
the most common type of target) or specularly reflected by a glint or corner cube in some instances.  The E-
fields are propagated using an atmospheric Green's function integral formulation.  The Green's function for
the vacuum wave equation is

where ρ→1 and ρ→2 are vectors to the initial and final propagation points with wave number k = 2 π/λ. 
Using the extended Huygens-Fresnel approximation and including atmospheric turbulence perturbations,
the atmospheric Green's function is usually modeled by

where

χ(r→2, r→1)  and  φ(r→2, r→1)  are the log-amplitude and phase perturbations,

and r→1, and r→2 are radial vectors perpendicular to the propagation axis at 0 and L meters, respectively. 
The propagated E-field at a distance L is then given by the integral over the Green's function:

If we assume the transmitted laser beam is an unobscured, unclipped Gaussian, then the source E-
field is

where ω is the 1/e2 intensity radius, F is the effective focal length, and r→1 is the transverse coordinate at the
transmitter aperture.  The field at the target before reflection from the target is from equation (3)
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where ψ is the sum of χ and iφ.  After reflection, the field is denoted by E(r→2).  The E-field back at the
receiver is then

Holmes et al1-3 have derived the time-delayed correlation function for the round-trip intensity

since many of the desired statistics can be determined from this function.  Substituting E(r→2) into equation
(6) and taking advantage of the diffuse target reflectivity properties

as well as the jointly Gaussian nature of the reflected fields, Holmes calculates the time-delayed (round-
trip) intensity covariance from equation (7),

where δr→3 = r→3 - r→3′, which he then averages over the receiving aperture.  The aperture-averaged intensity

variance with δr→3 = 0 and τ = 0 is reviewed in the next three sections.

2.2 Aperture Averaging of Atmospheric Scintillations

The large aperture of the receiving telescope averages the intensity fluctuations produced by
atmospheric scintillation.  The aperture averaged log-amplitude variance has been experimentally found to
saturate at a value of about 0.5, which is, therefore, the maximum allowable value regardless of how large
the Rytov point log-amplitude variance may be.  The normalized intensity variance or "scintillation index"
is defined as

and is found from equation (9) with CI(δr3 = 0, τ = 0), shown by Holmes to be

where f2(r) is defined

where ω is the 1/e2 intensity radius of the transmitter beam (ω ≈ dtran/2), F is the effective focal length
(phase-front curvature), and we use the definition of ρo

which for constant Cn
2 this becomes

Cχ(δr→3, δr→2, v→τ) is the log-amplitude covariance function defined as

and is given by Holmes as
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where t is the normalized pathlength, t ≡ z/L, from the target to the aperture, r→3 is the transverse coordinate

at the receiving aperture, r→2 is at the target, and v→ is the transverse wind velocity.

Holmes has evaluated the aperture averaging integral of equations (11), (12) and (16) and found a
numerically straightforward evaluation of equation (11) given by

where

and A is an arbitrary integration point such that the integral beyond A in equation (18) becomes negligible,
and Pm is the mth zero of Jo(x).  The log-amplitude covariance of equation (16) may then be evaluated
using

where

with 1F1 being the confluent hypergeometric function and with

and

Equations (16) through (20) are analytically complicated but may be numerically evaluated using
the series expansions

for small x or using

for large x values.  Some results are shown in Figure 1.
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Figure 1.   A)  Normalized variance of irradiance versus Rytov variance (point log-amplitude
variance) for a resolved diffuse target illuminated by a coherent source.  Solid line is the theoretical
curve from Holmes1-4  B)  Same for multiple uncorrelated mode laser and coherent single mode laser. 
The “vacuum speckle contrast ratio” is the reciprocal of the number of uncorrelated laser modes, Ml.

Many researchers use the inverse of the variance of the normalized intensity, equation (10), as the
definition of SNR.  As seen in Figure 1, the σI

2 determined from equations (11) through (24) is valid for
strong round-trip turbulence and predicts considerable aperture averaging with nominal aperture sizes in
good agreement with the data.  At low turbulence conditions, the normalized intensity variance is 1.0 due to
target speckle only.  At high turbulence conditions the intensity variance is due entirely to scintillation, but
the E-field again becomes a complex Gaussian random variable with Rayleigh distributed amplitude
envelope and unit mean variance negative-exponential amplitude-squared envelope, the same as for pure
speckle-targets.  At intermediate turbulence levels, the scintillation is larger than one due to additional
corruption of the speckle statistics by the turbulence.

2.3  A Simple Model of Scintillation Statistics from Resolved Targets for the K-distributions

Scintillation statistics for resolved diffuse targets have also been well established1-4 with data and
theory by Holmes and co-workers for low cross-wind, nearly static ladar and target conditions.  (The
results need to be modified for high slew rate, aircraft operation, or satellite operation corresponding to
high Greenwood frequencies.)  Path integrated turbulence strength is most often characterized by the Rytov
variance or the nonfluctuating point-source, point-receiver, one-way propagation "log-amplitude variance"

where Cn
2(z) is the refractive index structure coefficient.  (Note that the Rytov variance is symmetric with

respect to the optical path.  The same value is obtained whether we go from the ladar to the target or from
the target to the ladar.  As such, the value of the Rytov parameter for determining a ROC is questionable.) 
For constant Cn

2 equation (25) reduces to

From weak turbulence theory, the normalized intensity variance is related to the Rytov parameter by

Following references 1 to 4, we define the aperture-averaged normalized intensity variance or
"scintillation parameter" as
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where σIn
2 is the variance of the normalized intensity, which is reduced by aperture averaging via the factor

γ, the aperture-averaging factor, and Ml is the number of independent laser modes.  It is possible to make a
simple curve fit to data and theory from Holmes et al. in Figure 1, and after some trial and error the
aperture averaging factor

appears to give a good simple fit to the data and theory.

The PDF's of the roundtrip scintillation for coherent detection have been shown experimentally
and theoretically4 to be well described by the monochromatic K-distribution (Figure 2) given by

or normalized

where Mt is the turbulence strength parameter, and KMt-1(I) is a modified Bessel function of order Mt-1 for
coherent detection of a single mode laser.  Mt must be determined from

for use in equations (30) or (31) from equations (28) and (29) with Ml = 1.

Figure 2.  Monochromatic K-distribution data fit.
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For direct detection using a multimode laser, the scintillation PDF is given by the polychromatic
K-distribution of

or normalized

where Ml is the number of uncorrelated laser modes, and the normalized intensity variance is
used to determine Mt

and Ml must be determined by other measurements.  Figure 3 shows good experimental and theortetical
agreement for resolved targets.

2.4  Scintillation from Unresolved Targets (An Extrapolation)

Scintillation statistics for unresolved glint targets have been measured and numerically analyzed
by Churnside et al5-6 as shown in Figure 4.  A simple curve fit to these data relating the Rytov variance to
the unresolved-target round-trip scintillation parameter in Figure 4 has been found to be

Figure 3.  Polychromatic K-distribution data fit.
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here Ml = 1 for coherent single mode lasers.  (See Figure 5.)  Since these data were collected for a 1 mm
pupil, aperture averaging will reduce the scintillation, and for calculations we follow Churnside7
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where

for the strong turbulence cases of both

2.5  Implications for the Receiver-Operating-Characteristic

We propose that the unresolved target scintillation index should then be used in the K-distributions
(equations (30-31) and (34-35)) of Section 2.3, which are derived for resolved targets, to compute
probabilities of detection vs false alarm rates in a receiver-operating-characteristic analysis.  For example,
for heterodyne detection, the ROC should be given by8

D
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pK n F
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Figure 4.  Normalized variance of irradiance versus Rytov variance for a resolved large diffuse

target with a single small glint in front illuminated by a coherent laser.  Experimental points are
indicated by dots, and the numerical analyses from Churnside6 are indicated by lines for the three off-
axis distances as indicated.
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Figure 5.   Simple model for unresolved target normalized intensity variance vs Rytov

parameter.

3.0 MONTE CARLO SIMULATION CODE DESCRIPTION

The Monte Carlo code9,10 simulating the physical processes (analytically) described above is
illustrated in Figure 6.  The laser source propagates from the ladar aperture on the left side of the figure
represented by an E-field at the center of a 2D grid of E-field elements.  The mode is defined to be a
Gaussian plane wave with a beam-waist radius dimension defined by the ladar being modeled.  The beam
waist radius is smaller than the transmitting telescope aperture radius depending on the desired field-of-
view ladar.  The laser mode E-field is then propagated a distance δz through the first phase screen using a
split-step Fourier algorithm

where

and κκ is the wavenumber vector (κx, κy) with magnitude κ.  The phase increment θ(x,y) due to propagation
through a phase screen j is given by

where at each step θ is generated by the inverse Fourier transform of a filtered white Gaussian
pseudorandom field which constrains the power spectrum of the phase fluctuations to the desired spectrum
such as the modified Kolmogorov spectrum

where ppK is the polychromatic K-distribution with Ml = infinity, since a diffuse target (σIn = 1) has been
included already in equation (36) and, therefore, equation (40).  The PDF would then in actuality be an
atmospheric turbulence only effect.
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where Cn
2 is the refractive index constant Lo is the outer scale of turbulence and lo is the inner scale of

turbulence.  Lo is typically the lesser  of 10 m or the height of the laser beam above the ground or the size
of an open window.  The inner scale of turbulence is typically 1 to 10 mm.

The propagation steps are repeated, typically with 20 to 40 screens, until the range to target is
reached.  The E-field matrix at the target is then clipped to represent the target's cross-sectional area,
varying in this study from 10 cm x 10 cm to 51 cm x 51 cm in size.  Random phasors within the target area
represent a diffuse target surface.  The back-scattered speckle-pattern then passes in reverse order through
the random phase screens.  If there is little transverse wind, say in sea-skimmer detection on a calm day, the
same random phase screens are used.  If there is a strong transverse wind, say in side-looking ladar on
aircraft, new (independent) random phase screens are generated for the return path.  The final E-field
matrix is then stored.  The scintillation statistics, resulting from many phase-screen realizations, at one E-
field matrix point corresponds to a point aperture (about 1 mm in diameter) produced scintillation.  By
averaging over many 1 mm apertures, we can simulate the effects of aperture averaging for a given target
size.  Typical aperture sizes are 10 cm to 25 cm in diameter.  There are obviously many combinations of
target, aperture, range, lo, and Cn

2 values.  Each round-trip turbulence realization requires about 100
Gflops and at least 20 realizations are required for good statistics, thus, the Monte Carlo simulation study
is quite computer intensive.
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Figure 6.  Round-trip turbulence Monte Carlo Analysis schematic.

4.0  MONTE CARLO SIMULATION RESULTS TO DATE

The initial series of computer runs pertained to Navy sea-skimmer detection scenarios using an
eyesafe 1.5 µm laser and constant Cn

2 values with the same phase-screens inward and outward, inner scales



of 1 to 10 mm, a 20 km maximum range, 10 cm to 25 cm diameter apertures, and 10x10 cm2 to 51x51 cm2

target cross-sections.

4.1  Validation of the K-Distribution for Normalized-Intensity Fluctuation (Scintillation)

The monochromatic K-distribution pdf (K-pdf) of equations (30-31) is compared to the lognormal
pdf (logN) and the exponentially modulated lognormal pdf (logNexp) which are often used to model
scintillation.  The goodness of fit to the Monte Carlo simulation results is determined by computing the
third and fourth moments of the normalized intensity, known as skewness and kurtosis:

skewness =  < (I- < I > ) >3                                                     (45)

kurtosis =  <(I- < I > > -3 <(I- < I > ) >4 2 2 (46)

                                                      ( )variance = = −σ I I I2 2
                                                     (47)

For a 20.5 km target range with nearly constant Cn
2 = 1 x 10-18, we obtain the following fits vs target size

for the two extreme values of lo:

Inner Scale = lo = 1 mm
Target Sizes: 51x51 cm2 40x40 cm2 30x30 cm2 20x20 cm2 10x10 cm2

Variance 1.230 1.597 2.040 2.283 32.693

Skewness (simul.) 3.47 7.134 10.35 14.05 49.63
Skewness (K-pdf) 3.65 11.14 18.33 22.45 52.04
Skewness (logN/exp) 3.74 11.81 20.79 26.5 77.54
Skewness (logN) 6.25 2.77 0.94 0.15 0.004

Kurtosis (simul.) 15.50 64.36 82.83 132.76 1215
Kurtosis (K-pdf) 17.29 64.69 165.93 249.81 1042
Kurtosis (logN/exp) 18.79 83.72 268.08 453.40 3999
Kurtosis (logN) 81.89 35.85 11.96 1.36 0.02

Inner Scale = lo = 10 mm
Target Sizes: 51x51 cm2 40x40 cm2 30x30 cm2 20x20 cm2 10x10 cm2

Variance 1.23 ** 2.01 ** 2.70

Skewness (simul.) 3.47 ** 8.91 ** 23.70
Skewness (K-pdf) 3.65 ** 17.91 ** 29.92
Skewness (logN/exp) 3.73 ** 20.20 ** 37.92
Skewness (logN) 6.25 ** 0.68 ** 0.004

Kurtosis (simul.) 15.49 ** 57.60 ** 400
Kurtosis (K-pdf) 17.26 ** 159.91 ** 420
Kurtosis (logN/exp) 18.75 ** 252.75 ** 953
Kurtosis (logN) 81.76 ** 7.43 ** 0.01

Obviously the K-pdf fit is better than the exponentially-modulated-lognormal pdf and is much better than
the lognormal pdf.  We note that for the small inner scale (1 mm) the variance of the normalized intensity
becomes quite large for the smaller targets due to smaller atmospheric-speckle averaging by the smaller
target cross-sections.  This variance pertains to the 1 mm sample point apertures and will be reduced by
receiver aperture averaging which is currently under investigation.



4.2  Stronger Turbulence Cases

In stronger path integrated turbulence situations with larger Cn
2 values than treated above at 20.5

km range, the polychromatic K-distribution (equations (33-34)) has been found to give a better fit to the
Monte Carlo results.  One M parameter (Mt) represents the effects the turbulent atmosphere on a coherent
beam alone, and the second M parameter (Ml) is redefined to be the ratio of the correlation length of the
wave on the target after propagation through turbulence (ρo(R)) divided by the target size.  The normalized
intensity moments4 out to 6th order give good matches to the simulation results.  For the conditions treated
in Section 4.1 (Cn

2 = 1x10-18 at 20.5 km range) and choosing the inner scale (lo) to be 1 mm, we re-examine
the 20 x 20 cm2 and 30 x 30 cm2 target size cases which showed the worst fit to the model pdf's.  The
normalized intensity (equation (10)) moments are found to be:

20 cm x 20 cm Target
<In

4> <In
5> <In

6>
simulation 22.84 105.12 549.03
polyK-pdf 23.12 110.57 622.89

30 cm x 30 cm Target
<In

4> <In
5> <In

6>
simulation 150.80 1727.64 24387
polyK-pdf 159.33 2097.18 37478

The fit to the Monte Carlo runs is seen to be better than that of the monochromatic K-distribution used in
Section 4.1.  Higher Cn

2 values are currently being examined, but these runs require larger E-field matrices
of about 4096 x 4096 dimension, therefore, requiring the use of super-computers.  These results will be
reported at a later date.

4.3  Aperture Averaging Effects

The received E-field 1 mm point-aperture intensities for any individual Monte Carlo run may be
collected in groups of 100x100, 200x200, 300x300, etc. to simulate larger aperture telescope receivers of
10, 20, and 30 cm width, respectively.  Smoothed intensity fluctuations (i.e., reduced scintillation index,
σIn

2) are found using a larger aperture telescope, and the aperture averaging reduction of the scintillation
index has been found to be in good agreement with theory7  in our preliminary runs.  For shorter and more
tractable propagation paths of 1 to 2 km, we are operating in the near field.  The effects of (outward)
turbulence produced speckle averaging by the target’s finite cross-range extent have been observed as
shown in Figure 7.  For a 1070 m path and Cn

2 = 2 x 10-14 at 1.55 µm, as the target cross-range dimension



                                 
Figure 7.  Scintillation averaging by finite target cross-range size.  The scintillation index is

computed versus target cross-range dimension for four different receiving aperture diameters for a 1070
m path and Cn

2 = 2 x 10-14 at 1.55 µm

becomes larger, it subtends more turbulence produced speckle maxima, thus decreasing round-trip
scintillation.  It is interesting to note that when the target cross-range dimentsion becomes equal to the the
receiving aperture diameter, the scintillation is greatly reduced.  The effects of finite target-size smoothing
as the target moves into the far-field, at around 20 km in range, are also currently being investigated. 

5.0  SUMMARY AND STATUS OF CURRENT SIMULATIONS

The simulation of stronger Cn
2 paths is continuing using larger E-field and phase perturbation

matrices.  The use of a Cray super-computer has recently become available courtesy of the Space and
Strategic Defense Command in Huntsville, Ala. to do these simulations.  The refinement of the
polychromatic K-distribution to model target speckle-averaging (Ml parameter) and return trip turbulence
(Mt parameter) is continuing, and it appears to be an excellent pdf choice for strong path integrated
turbulence cases so far.  For weaker path-integrated turbulence cases, the monochromatic K-distribution
(single parameter) gives an excellent fit to the simulations.  In addition, stronger transverse wind scenarios,
as for side pointing aircraft mounted ladars, will be analyzed by generating new random phase-screens for
the return path (close to the A/C) instead of saving the outgoing phase-screens for back-propagation. 
These new pdf's may then be incorporated into a correct ladar receiver-operating-characteristic.
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